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ABSTRACT 

Some of t h e  m o s t  common methods of i n t e r p . r e t i n g  

powder compact ion  da ta  a re  d e s c r i b e d .  T h e s e  i n c l u d e  

compact ion  e n e r g y  v e r s u s  t a b l e t  h a r d n e s s  p r o f i l - e s ,  Heckel  

p l o t s ,  s t ress  r e l a x a t i o n  and e l a s t i c  r e c o v e r y  nieasure- 

ments  and r a d i a l  v e r s u s  a x i a l  p r e s s u r e  c y c l e s .  By 

compar ing  a,nd c r i t i c a l l y  e v a l u a t i n g  t h e  t e c h n i q u e s  

employed and  r e s u l t s  o b t a i n e d  by i n d e p e n d e n t  s t u d i e s  , i t  

i s  shown t h a t  c o n s i d e r a b l e  c o n f u s i o n  e x i s t s  i n  the 

l i t e r a t u r e .  A s  w e l l ,  it i s  d e m o n s t r a t e d  t h a t  i n  numerous 
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3 08 KRYCER, POPE,  AND HERSEY 

s t u d i e s ,  f u r t h e r  s u b s t a n t i a t i o n  of t h e  techniques 

employed i s  r e q u i r e d .  A s  a guide f o r  f u t u r e  r e s e a r c h ,  

some of t h e  most u s e f u l  and p o s s i b l y  l e a s t  ambiguous 

methods of i n t e r p r e t i n g  compaction d a t a  are  recommended. 

I N  TROD UC T I O N  

T a b l e t s  are  t h e  most common o r a l  dose form. 

Consequently,  s i n c e  t h e  mid-1950's t h e  i n t e r p r e t a t i o n  of 

compaction d a t a  i n  t a b l e t t i n g  o p e r a t i o n s  has  r ece ived  

c o n s i d e r a b l e  a t t e n t i o n  i n  the  pharmaceut ical  l i t e r a t u r e .  

I n i t i a l l y  powder compaction w a s  q u a n t i t a t i v e l y  d e s c r i b e d  

by pressure/volume r e l a t i o n s h i p s ,  and subsequent ly  by 

r e l a t i n g  compaction p r e s s u r e  t o  t a b l e t  hardness .  With 

t h e  c u r r e n t  widespread use of instrumented t a b l e t  

machines, which monitor a x i a l  upper and lower punch 

p r e s s u r e s ,  r a d i a l  d i e  w a l l  p r e s s u r e s  and punch 

displacement ,  an e x t e n s i v e  number of parameters  are 

a v a i l a b l e  f o r  e v a l u a t i n g  compaction mechanisms and 

comparing t h e  c o m p r e s s i b i l i t y  of pharmaceut ical  powders. 

The most popular  methods f o r  i n t e r p r e t i n g  compaction 

d a t a  i n c l u d e  t h e  u s e  of t e r m s  t o  q u a n t i t a t e  t h e  energy 

r e q u i r e d  f o r  e l a s t i c  and p l a s t i c  deformation,  p re s su re /  

volume r e l a t i o n s h i p s  (such a s  H e c k e l  p l o t s )  , stress 

r e l a x a t i o n  and e las t ic  recovery measurements, and 

p r e s s u r e  c y c l e  p l o t s  of r a d i a l  versus  a x i a l  p r e s s u r e .  

However, w i th  such a v a r i e t y  of methods a v a i l a b l e  f o r  
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INTERPRETATION OF POWDER COMPACTION DATA 309 

t r e a t i n g  compact ion  d a t a ,  many d i s c r e p a n c i e s  have  a r i s e n  

i n  t h e  l i t e r a t u r e .  N o t  o n l y  i s  t h e r e  a lsck oE d a t a  

compar ing  t h e  v a r i o u s  t e c h n i q u e s ,  b u t  t h e r e  a r e  <also 

s e r i o u s  c o n " 1 i c t s  i n  t h e  c o n c l u s i o n s  o f  r e s e a r r h t e r s  t h a t  

are employing  s i m i l a r  methods .  The a i n i  of t h i s  r e v i e w  

i s  t o  d e s c r i b e  anc? c r i t i c a l l y  e v a l u a t e  t h e  above-  

ment ioned  t e c h n i q u e s  and to  d e m o n s t r a r e  t h e  a r e a s  where 

f u r t h e r  s u b s t a n t i a t i o n  and c o r r e l a t i o n  of d e r i v e d  d a t a  

a re  r e q u i r e d .  

ENERGY U T I L I  Z F T I  ON v e r s u s  TABLET S'I'RENGT1-I __ ____I__ II_ _-I-- - 

One of t h e  m o s t  d i r e c t  means of comparLnq t h e  

t a b l e t t i n g  c h a r a c t e r i s t i c s  of powders  1 s t o  r i h t  t a b l e t  

c r u s h i n g  f o r c e  v e r s u s  mean c o m p a c t i o n  r x e s s u r e  

where  t h e  t a b l e t  c r u s h i n g  f o r c e  is measuied  w i t h  a 

i 1-71 

c o n s t a n t  l c a d i n q  r a t e  t a b l e t  s t r e n g t h  t e s t i n g  a p p a r a t u s  (1) 

and mean cclmpaction p r e s s u r e  ( P  ) i s  q i v e n  by m 

where Pa is t h e  maximum a p p l i e d  p r e s s u . r e  hy t h e  t o p  

punch and Pb is t h e  maximum t r a n s m i t t c ( 3  , p r e s s u r e  t o  t h e  

b o t t o n  punch.  O t h e r  s t u d i e s  h a v e  simple c o r r e l a t e d  

t a b l e t  s t r e n g t h  ( i n  a r b r i t r a r y  u n i t s )  w i t h  ma:x. imum 

a p p l i e d  f o r c e  o r  p r e s s u r e  (8-11) . 
c a n  be c:ri.i:j.ci.zec! si.nce i.1: f a i l s  t:o account:  for t h e  Ieng-th 

o f  the c o r n p a c  t, whil:;-t m e a n  c o ~ n p a c t i o n  pre:;~;ure is - t aken  

T h i s  l a t t e r  <appr-oach D
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310 KRYCER, POPE, AND H E R S N  

a r i t h m e t i c a l l y  i n s t e a d  of  t h e  a n t i c i p a t e d  loga r i thmic  deca!? 

of a p p l i e d  force down t h e  l e n g t h  of t h e  compact. 

A d d i t i o n a l l y ,  t a b l e t  t e n s i l e  s t r e n g t h  (a,) given by 

. . . . . ( 2 )  2P (5 = -  
X n D t  

where P i s  t h e  load necessa ry  t o  cause f r a c t u r e ,  and D 

and t are t h e  diameter  and t h i c k n e s s  of  t h e  compact 

r e s p e c t i v e l y ,  when a p p l i e d  t o  a diametral .  compression 

t e s t  where f a i l u r e  occur s  i n  t e n s i o n  (de f ined  by Rudnick 

and co-workers (I2) 1 ,  ensu res  t h a t  f a i l u r e  occur s  by 

on ly  one mechanism and is  independent of t a b l e t  

dimensions (13-18’ . 
has been widely employed i n  compaction s t u d i e s  

Never the l e s s ,  Hiestand and Peot  ( 2 3 )  po in t ed  o u t  t h a t  due 

t o  t h e  l a c k  of uniform d e n s i t y  w i t h i n  a powder compact, 

ux v a l u e s  ( a s  determined from equa t ion  2 ) ,  a r e ,  a t  b e s t ,  

an es t imate  of  t h e  c o r r e c t  v a l u e s .  R e e s  and co-workers 

( 2 4 r  25)  

t a b l e t  f a i l u r e  (W,) given by 

Subsequently,  t e n s i l e  s t r e n g t h  

( 1 9 - 2 2 )  

suggested t h a t  t h e  work r e q u i r e d  t o  cause 

Wf = 

where F and 

deformation 

. . . . ( 3 )  

x a r e  t h e  d i a m e t r a l  compaction f o r c e  and 

r e s p e c t i v e l y ,  and D and % are t h e  diameter  

and t h i c k n e s s  of t h e  compact r e s p e c t i v e l y ,  i s  a more 

s u i t a b l e  parameter than t e n s i l e  s t r e n g t h .  They 

demonstrated t h a t  t h e  work of f a i l u r e  w a s  a more 

s e n s i t i v e  measurernent than t e n s i l e  s t r e n q t h  and r e l a t e d  
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INTERPRETATION OF POWDER COMPACTION DATA 

b e t t e r  t o  t a b l e t  ' t o u g h n e s s ' ,  a s  d e f i n e d  by D.ieiter 

I n  a d d i t i o n ,  i t  a l s o  r e l a t e d  b e t t e r  t o  t h e  a b i l i t y  o f  

t a b l e t s  t o  res i s t  mechanica l  f a i l u r e .  Consequent ly ,  

W f  cou ld  be t h e  most u s e f u l  parameter  fo r  e v a l u a t i n q  

t a b l e t  s t r e n g t h .  

311 

( 2 6 )  

Not o n l y  i s  an energy  measurement p robab ly  t h e  

most a p p r o p r i a t e  f o r  t a b l e t  s t r e n g t h ,  i t  is a l s o  

p robab ly  t h e  b e s t  parameter  f o r  measurement of- 'compaction. 

Powders wi-th d i f f e r e n t  packing  d e n s i t i e s  an.d ( d i f f e r e n t  

p l a s t i c  and e l a s t i c  d e f o r m a t i o n a l  p r o p e r t i e s ,  and d i e s  

w i t h  d i f f e r e n t  f i l l  c a p a c i t i e s  could  r e s u l t :  i n  t h e  

u t i l i z a t i o n  of  d i f f e r e n t  amounts of  energy  i n  compact ion 

€ o r  e q u a l l y  a p p l i e d  p r e s s u r e s .  Conseguentl .y,  t h e  u s e  of  

compression p r e s s u r e s  c o u l d  r e s u l t  i n  d i f  €i .cu: t t ies  i n  

comparing t h e  compress iona l  c h a r a c t e r i s t i c s  of d i f f e r e n t  

f o r m u l a t i o n s .  d e  Blaey and co-workers, 

compact ion ene rgy  i n  q u a n t i t a t i n g  t h e  d i f f e r e n t  s t a g e s  

of compact ion.  The u s e  of compact ion ene rqy  also a l l o w s  

t h e  r e s u l t s  of  compact ion s t u d i e s ,  o b t a i n e d  by d i f f e r e n t  

i n v e s t i g a t o r s  t o  be compared and a s s e s s e d  

( 2 7 - 3 0 )  used 

(31) 

Althouqh energy  of compact ion i s  t h e  most l o g i c a l  

parameter  fo r  comparison w i t h  t a b l e t  s t r e n q t h ,  

c o n s i d e r a b l e  c o n f u s i o n  h a s  a r i s e n  o v e r  i t s  d e E i n i t i o n .  

A number of workers  ( 3 2 - 3 4 )  have ignored  d i e  w a l l  

f r i c t i o n  and c a l c u l a t e d  work of compact ion a s  t h e  t o t a l  

a r e a  under  t h e  upper  punch f o r c e  versi is  d i sp lacemen t  

D
ru

g 
D

ev
el

op
m

en
t a

nd
 I

nd
us

tr
ia

l P
ha

rm
ac

y 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
B

ib
lio

te
ca

 A
lb

er
to

 M
al

lia
ni

 o
n 

01
/2

0/
12

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



312 KRYCER, POPE, AND H E R S N  

(35 )  graph,  area OAC (F igu re  l a ) .  Nelson and co-workers 

r e a l i z e d  t h a t  t h e  upper punch f o r c e  included t h e  f o r c e  

needed t o  overcome d i e  w a l l  f r i c t i o n ,  and subsequent ly  

based t h e i r  c a l c u l a t i o n s  on t h e  f o r c e  t r a n s m i t t e d  t o  t h e  

lower punch. Work of compaction was de f ined  by t h e s e  

workers as a r e a  ODF (F igu re  l b ) .  However, from Figure l a ,  

a small  component of t h e  work done by t h e  t o p  punch is 

r ecove rab le  as  work done by t h e  powder compact on t h e  

recedinq top  punch ( a r e a  A B C ) .  A r e a  ABC w i l l  no t  

however r e p r e s e n t  t h e  t o t a l  r ecove rab le  work u n l e s s  t h e  

t a b l e t  could c a r r y  back completely t o  t h e  upper punch 

t h e  work u t i l i z e d  i n  e las t ic  deformation.  This  

r ecove rab le  work could be very c l o s e l y  approximated i f  

force-displacement cu rves  i n  t h e  decompression p a r t  of 

t h e  c y c l e  w e r e  e f f e c t e d  over  a t i m e  pe r iod  of t h e  o r d e r  

of t h e  t i m e  r e q u i r e d  f o r  complete e l a s t i c  recovery.  

However, a c c u r a t e  de t e rmina t ion  of r ecove rab le  e l a s t i c  

deformation energy has  n o t  a s  y e t  been achieved a s  a 

t h r e e  dimensional force-displacement  p r o f i l e  would have 

t o  be c h a r t e d .  This  i s  v e r i f i e d  by t h e  f a c t  t h a t  

e l a s t i c  recovery s t i l l  t a k e s  p l ace  when t h e  t a b l e t  i s  

completely removed from t h e  d i e  ( 3 6 )  

Since  measurement of t h e  f o r c e  r e g i s t e r e d  on t h e  

lower punch (F igu re  lb) t a k e s  loss of  energy due t o  

p a r t i c l e  rearrangement ,  i n t e r p a r t i c u l a t e  f r i c t i o n  and 

p a r t i c l e - d i e  w a l l  f r i c t i o n  i n t o  account ,  a r e a  ODE has  

a l s o  been employed f o r  assessment of powder compaction 
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3 

I >  I r- 

I ) )  E i i u l  i c e n i e n t  o' [ I ) , :  ( ' 1  1 l ~ l 1 ~ . i 1  ( - 4 )  

F I G U R E  1 
~ _ _ _ ^  

Typica l  fo rce -d i sp lacemen t  c u r v e s  f o r  ?I f i r s t  
compress. on employing ( a )  t h e  f o r c e  exex t e d  by t h e  
Lop punch, and (b) t h e  f o r c e  t r a n s m i t t e d  to  t h e  lower 
punch. 
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3 14 KRYCER, POPE, AND HERSEY 

( 3 7 r  3 8 ) .  A r e a  ODE h a s  been termed t h e  ' appa ren t  n e t  

energy '  i n p u t ,  a s s o c i a t e d  wi th  compression. The t e r m  

' a p p a r e n t '  h a s  been a p p l i e d  because,  as exp la ined  above, 

t h e r e  is  o f t e n  incomplete r e g i s t r a t i o n  of t h e  expansion 

energy ( a r e a  DEF) due t o  t h e  d i f f e r e n c e  i n  speed between 

t h e  ascending upper punch and t h e  expanding t a b l e t  ( 2 7 1  3 9 )  

Thus, t h e  ' appa ren t  n e t  energy '  as c a l c u l a t e d  from t h e s e  

force-displacement  p r o f i l e s  i s  no t  t r u e l y  i n d i c a t i v e  of 

any s p e c i a l i z e d  c h a r a c t e r i s t i c  of compaction. 

I n  an a t t empt  t o  d e f i n e  a ' t r u e '  n e t  compaction 

energy i n p u t ,  a more d e t a i l e d  assignment of t h e  

u t i l i z a t i o n  of compaction energy w a s  explored.  Energy 

i n  compaction i s  consumed by: (i) p a r t i c l e  

rearrangement;  (ii) i n t e r p a r t i c l e  f r i c t i o n ;  (iii) p a r t i c l e -  

d i e  w a l l  f r i c t i o n ;  ( i v )  e l a s t i c  deformation;  ( v )  p l a s t i c  

deformation and bond formation ( 3 7 r  4 0 ) .  

number of  assumptions,  de Blaey and co-workers 

de r ived  and u t i l i z e d  t h e  fo l lowing  e q u a t i o n s .  The 

s u b s c r i p t s  1 and 2 r e f e r  t o  a f i r s t  and a second 

compaction r e s p e c t i v e l y .  Other n o t a t i o n s  a r e  as  fo l lows :  

By making a 

( 2 7 ,  30 )  

= a p p l i e d  f o r c e  on upper punch and Fa' Fb 
experienced on lower punch 

dx = i n f i n i t e l y  small  displacement  of t h e  

upper punch r e l a t i v e  t o  t h e  lower 

punch 

= d i e  w a l l  f r i c t i - o n a l  f o r c e  F 
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INTERPRETATION OF POWDER COMPACTION DATA 3 15 

Dm, 1)s = p o s i t i o n  o f  upper  punch wherle f o r c e  

a p p l i e d  i s  maximum and minimum 

W e  = ene rgy  of e l a s t i c  de fo rma t ion  

WP 1 = ene rgy  of p l a s t i c  de fo rma t ion  

UPW = upper  punch work 

LPW = lower  punch work 

If i t  i s  assumed t h a t  (i) and (ii) above a x e  n e g l i g i b l e ,  

t h e n  t h e  a p p l i e d  energy  (UPW1) = (iii) + ( i v )  + ( v )  + 
(vi) , t ha - t  is :  - 

Rearrangi i iq  Equat ion  ( 4 )  

I f  a second compress ion  is  performed on t h e  t a b l e t  p r i o r  

t o  e j e c t i a n ,  where i t  i s  assumed tha t .  no f u r t h e r  p l a s t i c  

de fo rma t ion  o c c u r s ,  t h e n  by a s i m i l a r  dler:Lvation: - 

. .  LPWl - LPW2 = Wpl ..... ( 8 )  

(LPWL - LPW2) h a s  been used  as  t h e  ' n e t  ene rgy  i n p u t '  

( 2 2 r  2 9 r  41) ,  w h i l e  LPW2, and even UPW;? ( 3 4 )  , have been 

used  a s  r reasures  of  e l a s t i c  de fo rma t ion  du r i  nq 

compact icn  ( 2 2 '  3 0 )  . A p o s s i b l e  criticism of t h i s  
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316 KRYCER, POPE, AND HERSEY 

arguement i s  t h a t  t h e  use  of n e t  energy v e r s u s  t a b l e t  

s t r e n g t h  could b i a s  t he  r e s u l t s  i n  the  case of  

e l a s t i c a l l y  deforming compacts. These compacts could 

e x h i b i t  a poor energy u t i l i z a t i o n  i n  forming s t r o n g  

t a b l e t s ,  and t h i s  c h a r a c t e r i s t i c  would go undetected 

due t o  low n e t  energy va lues .  I n  a d d i t i o n ,  t h e  

assumption t h a t  no p l a s t i c  deformation occur s  i n  

recompression, e s p e c i a l l y  w i t h  t h e  modified t a b l e t  

machine employed ( 2 7 ) ,  i s  i n c o r r e c t  a s  it c o n t r a d i c t s  

stress r e l a x a t i o n  d a t a  (see STRESS RELAXATION s e c t i o n ) .  

The assumption i s  also i n  c o n f l i c t  w i t h  t h e  o b s e r v a t i o n s  

( 4 2 )  t h a t  i n c r e a s e d  dwell  t i m e  i n c r e a s e s  t a b l e t  s t r e n g t h  

and t h a t  d e c r e a s i n g  t h e  speed of compaction i n c r e a s e s  

t a b l e t  d e n s i f i c a t i o n  ( 4 3 )  . The sugges t ion  then might 

be t h a t ,  even though e l a s t i c  and p l a s t i c  deformation 

a r e  components of  t h e  second compression, e l a s t i c  

deformation be ing  much g r e a t e r ,  may overshadow t h e  s m a l l  

p l a s t i c  deformation component. Hence p l a s t i c  deformation 

i n  t h e  second compression may i n  many i n s t a n c e s  be 

d e l e t e d  from r e a l i s t i c  measureable c o n s i d e r a t i o n .  

From t h e  above d i s c u s s i o n ,  it would appear  t h a t  

t h e  work r e q u i r e d  t o  cause t a b l e t  f a i l u r e  ( W f )  versus  

lower punch work of compaction, a r e a  ODF (F igu re  l b ) ,  

i s  t h e  m o s t  u s e f u l  means of e v a l u a t i n g  energy u t i l i z a t i o n  

i n  compaction. This s t r eng th /ene rgy  p r o f i l e  a l s o  

p rov ides  a u s e f u l  means of comparing the  compaction 

p r o p e r t i e s  of d i f f e r e n t  mater ia ls  o r  fo rmula t ions .  
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INTERPRETATION OF POWDER COMPACTION DATA 317 

ELASTIC RECOVERY -_ 

The tendency of t a b l e t s  t o  cap  has  been r e l a t e d  t o  

many f a c t o r s  i n c l u d i n g  t h e  s t o r a g e  o f  el.as t i c :  ene rgy  

d u r i n g  compaction, w i t h  subsequen t  e l a s  t i c  : r ec :~ve ry  a f t e r  

t h e  removal of  a x i a l  p r e s s u r e  ( 4 7  4 4 - 4 6 )  , and /o r  t h e  

i n a b i l i t y  of t h e  m a t e r i a l  t o  r educe  t h e  s h e a r  stresses 

by l o c a l i z e d  s h e a r  f low,  i . e . ,  by p l a s t i c  de fo rma t ion  

Consequent ly ,  t h e  q u a n t i t a t i o n  o f  e l a s t i c  :rec:overy i s  

a u s e f u l  e x e r c i s e  i n  t h e  e l u c i d a t i o n  of coInpa.ct:ion 

mechanisms. Bes ides  LPW2, a s  d i s c u s s e d  p r e v i o u s l y ,  

t h e r e  are many o t h e r  means of e v a l u a t i n y  e l l a s t i c  

r ecove ry .  Huf f ine  and B o n i l l a  ( 4 7 )  measured trle 

pe rcen tage  a x i a l  r ecove ry  of t h e  compact: i n  the d i e ,  

w h i l e  C a r l e s s  and Leigh ( 3 6 )  demons t r a t ed  that t h e  

pe rcen tage  o f  e l a s t i c  r ecove ry  of  t h e  t a b l e t  a f t e r  

e j e c t i o n  was c o n s i d e r a b l y  h i g h e r  t h a n  t h a t  i n  t h e  d i e .  

Other  s t u d i e s  ( 4 8 r  4 9 )  a l s o  measured t h e  pe rcen tage  

i n c r e a s e  i n  h e i g h t  a f t e r  e j e c t i o n .  York. and I 3 a i l y  

measured b o t h  a x i a l  and r a d i a l  t?xpansi.on and t h e y  

sugges t ed  t h a t  a d e c r e a s e d  r a t i o  o f  axial1 t o  r a d i a l  

expans ion  was an i n d i c a t i o n  o f  improved f o r c e  

d i s t r i b u t i o n  d u r i n g  compress ion .  Summers and co-workers 

( 5 0 )  employed a modulus o f  e l a s t i c i t y  (E:) d e f i n e d :  - 

( 7 4 )  

( 4 9 )  

E = aAL/AL . . . . . . ( 9 )  

where oA i s  t h e  a p p l i e d  a x i a l  p ressure!  on a second 

compression and L and AL a r e  t h e  h e i g h t  and change i n  
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3 18 KRYCER, POPE, AND HERSEY 

h e i g h t  r e s p e c t i v e l y  on re-compression. E i s  i n v e r s e l y  

r e l a t e d  t o  t h e  pe rcen tage  e l a s t i c  recovery measurements 

employed by o t h e r  workers ,  and consequent ly  re la tes  

i n d i r e c t l y  t o  e las t ic  recovery.  

From t h e  techniques p re sen ted  , t h e  most l o g i c a l  

method of e v a l u a t i n g  e l a s t i c  recovery would be  a p l o t  

of percentage a x i a l  recovery a f t e r  e j e c t i o n  versus  

energy of compaction (see 'ENERGY U T I L I Z A T I O N  v e r s u s  

TABLET STRENGTH'  f o r  a d i s c u s s i o n  of energy of 

compact ion) .  This technique makes no assumption about 

t h e  e x t e n t  of p l a s t i c  deformation,  nor does it s u f f e r  

from i n t e r p r e t a t i v e  d i f f i c u l t i e s .  

HECKEL PLOTS - - 

Kawakita and Ludde (51) have reviewed many of  t h e  

equa t ions  t h a t  d e s c r i b e  t h e  volume changes of a powder 

m a s s  under p r e s s u r e .  However t h e  equa t ion  developed by 

Heckel I 
( 5 2 ,  53)  

1 I n  (m) = k P  + A ..... (10) 
where D i s  t h e  d e n s i t y  of  t h e  compact r e l a t i v e  t o  t h e  

a b s o l u t e  d e n s i t y  of  t h e  m a t e r i a l  being compacted, P i s  

t h e  a p p l i e d  p r e s s u r e ,  k i s  e q u a l  t o  t h e  r e c i p r o c a l  of  

3 Y ,  where Y i s  t h e  y i e l d  s t r e n g t h  of t h e  m a t e r i a l ,  and 

A i s  a f u n c t i o n  of t h e  o r i g i n a l  compact volume, has  been 

found t o  be t h e  most i n fo rma t ive .  From t h e  t h e o r e t i c a l  

work of Hencky ( 5 4 )  and I s h l i n s k y  ( 5 5 )  , Hersey and R e e s  
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INTERPRETATION OF POWDER COMPACTION DATA 

( 5 6 )  showel3 t h a t  

3 19 

1 k = -  . ... . (11) 
PY 

where Py i s  t h e  mean y i e l d  p r e s s u r e  o f  the m a t e r i a l .  

This  y i e l d  p r e s s u r e ,  c a l c u l a t e d  from t.he :sl.opc? of  t h e  

H e c k e l  P l o t s ,  has  been  found t o  be  i n  r e a s o n a b l e  

agreement  t o  y i e l d  p r e s s u r e s  found by u s e  of  r a d i a l  

v e r s u s  a x i a l  p r e s s u r e  c y c l e s  ( 5 0 )  

Hersey and R e e s  ( 5 6 r  5 7 )  a l s o  d e f i n e d  t y p e  A and 

type  B compact ion behav iour  ( F i y u r e s  2a and 211) .  Type 

A behav iour  i s  c h a r a c t e r i s t i c  o f  a powder t h a t  has  an  

i n i t i a l  p a r t i c l e  s i z e  dependent  bu lk  d e n s i t y .  

D e n s i f i c a t i o n  under  p r e s s u r e  i s  due i n i t : i a l l y  t.o p a r t i c l e  

s l i p p a g e  o r  r epack ing ,  and then  s u b s e q u e n t l y ,  to p l a s t i c  

de fo rma t ion .  The compacts however retiai-n d i f  Ee ren t  

d e g r e e s  of p o r o s i t y  depending  upon t h e  j .n i t ia .1  packing  

ar rangement  i n  t h e  dye .  Type A c u r v e s  also u s u a l l y  

e x h i b i t  a s t e e p e r  s l o p e  t h a n  Type B ,  hence a lower Py 

v a l u e .  They are i n  g e n e r a l  s o f t e r  m a t e r i a l s  which 

undergo p l a s t i c  de fo rma t ion  e a s i e r  t h a n  Type 8 m a t e r i a l s .  

A ma te r i a l .  t h a t  e x h i b i t s  Type B behaviour  is  u s u a l l y  

h a r d e r ,  has  a h i g h e r  y i e l d  p r e s s u r e  and undergoes 

c o n s o l i d a t i o n  by i n i t i a l  f r agmen ta t ion  to form a 

c o n s i s t e n t  packing  and t h e n  p l a s t i c  de fo rma t ion .  

I n  a s t u d y  on t h e  e f f e c t  o f  compress ion  on f a t t y  

a c i d s  and on l a c t o s e  mixed w i t h  h i g h  p e r c e n t a g e s  of  

f a t t y  a c i d s ,  a Type C behav iour  was d e s c r i b e d  ( 5 8 )  
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INTERPRETATION OF POWDFX COMPACTION DATA 321 

The d e s c r i b e d  Type C behav iour  ( F i g u r e  2c) however f i t s  

a Type A p r o f i l e  e x c e p t  t h a t  w i t h  t h e  l a c t o s e  mixed 

w i t h  a h igh  p r o p o r t i o n  of f a t t y  a c i d s ,  because  of! t h e  

n a t u r e  of  t h e  m i x t u r e ,  t h e  i n i t i a l  d e n s i f i c a t i o n  due 

t o  p a r t i c l e  r epack ing  i s  so s l i g h t  a s  to be missed .  

The s t e e p  sl .opes p l o t t e d  by York and P i l p e l .  

i n d i c a t e  ve ry  low y i e l d  p r e s s u r e s ,  t h e  yie1.d p r e s s u r e  , 

as  expec ted , .  i n c r e a s i n g  w i t h  t h e  m e l t i n q  p o i n t  of t h e  

f a t t y  a c i d s .  A l i m i t i n g  v a l u e  i s  p e r c e i v e d  i n  t h e  

d e s c r i b e d  Type C p lo ts  because  the pack ing  f r a c t i o n  

approaches  u n i t y  a t  much lower compress ive  p r e s s u r e s  

t h a n  have been expe r i enced  f o r  o t h e r  compounds, 

By measur ing  t h e  r e l a t i v e  d e n s i t y ,  D under  

p r e s s u r e ,  P ,  t h e  Heckel e q u a t i o n  h a s  been u t i l i z e d  i n  

numerous compact ion s t u d i e s  ( 4 3  59-64) . IHowever when 

t h e  r e s u l t s  o f  v a r i o u s  workers  a r e  compared t h e  p i c t u r e  

becomes ve ry  c o n f u s i n g .  Rue and R e e s  ( 6 5 ' )  c o u l d  n o t  

o b t a i n  l i n e a r  Heckel p l o t s  f o r  a granular .  

m i c r o c r y s t a l l i n e  c e l l u l o s e ,  Elcerna G25@, and suigges t e d  

measuring a r e a s  under  Heckel p l o t s  f o r  d i f f e re :n t .  upper  

punch c o n t a c t  t i m e s .  Recen t ly ,  York ( ) de mo ns t r  a t e d  

t h a t .  t h e  nvmer ica l  v a l u e s  f o r  y i e l d  p r e s s u r e  ( l / ' k )  

o b t a i n e d  by v a r i o u s  w o r k e r s  f o r  c r y s t a l l i n e  l a c t o s e  

w e r e  dependent  on expe r imen ta l  condi. t i o n s  such  as t h e  

d e g r e e  and t y p e  o f  l u b r i c a t i o n  of punches and d i e s ,  

punch d i a m e t e r ,  compact ion ra te  and method of measuring 

r e l a t i v e  d e n s i t y ;  t h e s e  problems have  a l s o  been  

( 5 f 3 )  
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KRYCER, POPE, AND HERSEY 322 

suggested by Hersey and co-workers ( 6 7 ) .  

i n t e r e s t i n g  t o  n o t e  t h a t  t h e  y i e l d  p r e s s u r e  i s  the  

p r e s s u r e  a t  which p l a s t i c  deformation starts and has  

been quoted i n  most i n s t a n c e s  from ' a t  p r e s s u r e f  

r e l a t i v e  d e n s i t y  measurements. F e l l  and Newton 

and York (66) have shown t h a t  ' a t  p r e s s u r e  ' d e n s i t y  

measurements i nc lude  an  e l a s t i c  component i n  the  

powder deformation and r e s u l t s  i n  f a l s e l y  low y i e l d  

p r e s s u r e  v a l u e s .  

d e n s i t y  b u t  measured i t  i n  t h e  d i e  and consequent ly  d i d  

n o t  a l low f o r  f u l l  e l a s t i c  recovery (see ELASTIC 

RECOVERY). The a u t h o r s  b e l i e v e  t h a t  t h e  d e n s i t y ,  D ,  

should be  measured a t  ' z e r o  p r e s s u r e '  a f t e r  t a b l e t  

e j e c t i o n  (assuming f u r t h e r  d e n s i f i c a t i o n  does n o t  occur  

d u r i n g  e j e c t i o n )  and t h a t  Heckel p l o t s  should be 

employed on ly  f o r  t h e  comparison of d i f f e r e n t  powders 

under i d e n t i c a l  experimental  c o n d i t i o n s  . 

I t  i s  

( 4 3 )  

H e c k e l  ( 5 3 )  used ' z e r o  p r e s s u r e '  

STRESS RELAXATION - 

Under s t a t i c  compression, a dec rease  i n  t h e  a p p l i e d  

f o r c e  occur s ;  t h i s  phenomenon is  known as stress 

r e l a x a t i o n  o r  c r e e p  and r e s u l t s  from p l a s t i c  deformation 

of t h e  compressed mater ia l  i n t o  i n t e r s t i t i a l  space. 

Considerable  fundamental r e s e a r c h  has  been c a r r i e d  o u t  

t o  e x p l a i n  c r e e p  mechanisms ( 6 8 - 7 3 )  , b u t  t h e  r e l evance  

of t h i s  phenomenon t o  t h e  e l u c i d a t i o n  of powder 
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INTERPRETATION OF POWDER COMPACTION DATA 323 

compaction mechanisms has n o t  received t h e  a t t e n t i o n  

i n  t h e  pharmaceutical  l i t e r a t u r e  it war ran t s .  ThLe time- 

dependent i n c r e a s e  i n  s t r e n g t h  of sodium c:hlori.de 

t a b l e t s  a f t e r  e j e c t i o n  has been a t t r i b u t e d  t o  s t ress  

r e l a x a t i o n  w i t h i n  t h e  compact due t o  t h e  s t r e s s :  e x e r t e d  

by a work-hardened o u t e r  s h e l l  (74f 75)  . 
workers ( 4 6 r  7 6 - 8 0 )  have employed stress re1axat:inn c u r v e s  

t o  q u a l i t a t i v e l y  compare t h e  p l a s t i c  flow of powdered 

pharmaceut icals  under p r e s s u r e .  However, t h e  

q u a n t i t a t i o n  of stress r e l a x a t i o n  d a t a  has r ece ived  

s c a n t  a t t e n t i o n .  The one no tab le  excep t ion  .is t h e  work 

of David and Augsburger (42). BY t r e a t i n g  t ~ i e  pl .as t ic  

flow concept mathematically a s  t h e  Maxwe1:L model under 

cons tan t s t r a i n  ( * I f  8 2 )  which invo lves  combining one 

viscous and one e las t ic  parameter i n  s e r i e s ,  ;David and 

Augsburger ( 4 2 )  derived t h e  r e l a t i o n s h i p ,  

Various 

I n  AF = In  AFo - k t  . . . . . . (12) 
w h e r e  AF i s  the  amount of f o r c e  l e f t  i n  the . v i s c o e l a s t i c  

r e g i o n f  i . e . ,  t he  compression s t a g e  where p l a s t i c  flow 

and f r a c t u r e  takes p l ace  ( 8 3 ) ,  a t  t ime,  t,: AFo i s  t h e  

t o t a l  magnit.ude of t h i s  f o r c e  a t  t = 0 and k i s  the 

v i s c o e l a s t i c  s l o p e .  B y  using the  v i s c o e l a s t i c  sl!ope, 

k ,  t h e s e  workers were a b l e  t o  q u a n t i t a t e  % h e  degree of 

p l a s t i c  flow of  d i r e c t  compression t a b l e t  f i l l e rs  under 

compaction. Ma te r i a l s  with a higher  v i s c o e l a s t i c  s l o p e ,  

k ,  e x h i b i t e d  a g r e a t e r  degree of p l a s t i c  f l o w  under 
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324 KRYCER, POPE, AND H E R S N  

compression. Th i s  parameter w a s  found t o  c o r r e l a t e  w e l l  

w i t h  t a b l e t  t e n s i l e  s t r e n g t h  measurements. For example, 

mater ia ls  t h a t  d i sp l ayed  l a r g e  v i s c o e l a s t i c  s l o p e  c o n s t a n t s  

formed s t r o n g  t a b l e t s  a t  low compaction p r e s s u r e s .  

Hiestand and co-workers ( 7 9 )  looked a t  stress 

r e l a x a t i o n  i n  a s l i g h t l y  d i f f e r e n t  way. They p l o t t e d  

r e l a t i v e  p r e s s u r e  ( r a t i o  of p r e s s u r e  a t  t i m e  t t o  

maximum p r e s s u r e  a p p l i e d )  v e r s u s  t h e  loga r i thm of t i m e  

( 4 2 )  of decay. I n  c o n t r a s t  t o  David and Augsburger , 

Hiestand and o t h e r s  ( 7 q )  followed stress r e l a x a t i o n  

ove r  a r e l a t i v e l y  long t i m e  pe r iod  (up t o  1 0 0 0  s 

c o n t r a s t i n g  wi th  6 o r  7 s ) .  They found t h a t  t h e r e  was 

a change i n  t h e  ra te  of stress r e l a x a t i o n  a f t e r  a s h o r t  

t i m e  pe r iod  ( 2 - 6  s )  sugges t ing  t h a t  some i n i t i a l l y  

prominent mechanism soon becomes n e g l i g i b l e .  They a l s o  

demonstrated t h a t  m a t e r i a l s  t h a t  tend t o  c a p  e x h i b i t  

slower stress r e l a x a t i o n .  

I n  q u a n t i t a t i n g  t h e  tendency of mater ia ls  t o  

laminate  o r  cap,  Hiestand and co-workers ( 7 9 )  developed 

a d i r e c t  t es t  f o r  a s s e s s i n g  what they have termed BFP 

( b r i t t l e  f r a c t u r e  p r o p e n s i t y ) .  This i s  de f ined  as:- 

0- 
BFP = 0 . 5  [- 'I' - 1 1  . . . . . (13) 

TO 0 

and is o b t a i n e d  by performing a t r a n s v e r s e  compression 

t e s t  on a compact w i th  and wi thou t  a s m a l l  h o l e  i n  i t ,  

t h e  t e r . s i l e  s t r e n g t h s  beinq aTO and oT, r e s p e c t i v e l y .  
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INCERPRETATION OF POWDER COMPACTION DATA 325 

The BF? f a c t o r  i s  a a u a n t i t a t i o n  of  t h e  stress r e l a x a t i o n  

by p l a s t i c  de fo rma t ion  of t h e  compact a t  t h e  h o l e .  I f  

no r e l a x a t i o n  o c c u r s ,  t e n s i l e  f r a c t u r e  miqht  be  expec ted  

t o  occur  a t  e x a c t l y  o n e - t h i r d  of t h e  t.ensi1.e stress 

r e q u i r e d  t o  produce t e n s i l e  f a i l u r e  when no h o l e  i s  

pr- e s e n t  ( 7 9 ' .  

t h e  edge  of  t h e  h o l e  were r e l i e v e d ,  no obse rvab le  

d i f f e r e n c e s  i n  t h e  t e n s i l e  f o r c e  would be obse:rved. Real  

m a t e r i a l s  should  f r a c t u r e  a t  some i n t e r m e d i a t e  v a l u e s ,  i .e., 

0 < BFP < 1 ,  t h e  magnitude depending  on t h e i r  a b i l i t y  t o  

r e l i e v e  l o c a l i z e d  stresses. Thus s i n c e  t h e  BFF' .value is 

a n  i n v e r s e  measure of  l o c a l i z e d  stress r e l i e f ,  a h igh  

v a l u e  was shown t o  i n d i c a t e  a h i a h  tendency  of a compact 

t o  c a p  o r  l a m i n a t e .  

I n  c o n t r a s t ,  i f  a l l  e x c e s s  stre:;ses a t  

A low BFP however does  n o t  n e c e s s a r y  mean t h a t  

capping  o r  lamir?a t ing  problems w i l l  not  e x i s t .  For  

example,  pa race tamol ,  which has  a low E F T '  value, has  

however a h igh  cappinq  p r o p e n s i t y .  Car-st-ensen 

p o i n t e d  o u t  t h a t  capping  i s  p o s s i b l e  bo th  ,wi th . in .  t h e  

d i e  or  on e j e c t i o n .  I f  t h e  l a t t . e r  occ i i r s ,  t h e n  t h e  

volume expans ion  of t h e  compact may be t h e  pr ime f a c t o r .  

Thus,  i f  a compound has  a l o w  BFP b u t  e x p n t l s  c r n s i d e r a b l y ,  

t h i s  e x c e s s i v e  expans ion  may accoun t  f o r  t i c  capp inq .  

( 8 4 )  has 

S i n c e  1 9 6 0  when Long ( 8 5 )  e l u c i d a t e d  t h e  : s i g n i f i c a n c e  

of  r a d i a l  v e r s u s  a x i a l  p r e s s u r e  c y c l e s  I t h e s e  pl .ots have  
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326 KRYCER, POPE, AND HERSEY 

found widespread use i n  t h e  e v a l u a t i o n  of compaction 

d a t a  ( 4 5 '  50' 8 6 - 9 8 ) .  

Long ( 8 5 )  desc r ibed  two types  of  behaviour (F igu re  3 ) .  

A mater ia l  w i t h  a c o n s t a n t  y i e l d  stress i n  s h e a r ,  

e x h i b i t s  s l o p e s  OA = BC = v ( t h e  Poisson r a t i o ,  de f ined  

For i d e a l  non-porous  p lugs ,  

as t h e  t r a n s v e r s e  expansion p e r  u n i t  dimension of  a 

s o l i d  of  uniform c r o s s  s e c t i o n  t o  i t s  c o n t r a c t i o n  per 

u n i t  l e n g t h  when s u b j e c t e d  t o  a u n i a x i a l  compression 

stress (du r ing  e l a s t i c  d e f o r m a t i o n ) ) ,  s l o p e s  

AB = CD = 1, where p o i n t  A i s  t h e  y i e l d  p o i n t  o r  e l a s t i c  

l i m i t .  The o t h e r  case i s  f o r  a mater ia l  t h a t  behaves 

l i k e  a Mohr body where t h e  y i e l d  stress i n  s h e a r  i s  a 

f u n c t i o n  of t h e  normal stress on t h e  plane of shear :  

h e r e ,  s l o p e s  OA' = B ' C '  = V ,  whi le  s l o p e s  A ' B '  = - 

and C'D' = =-, where IJ is  a c o n s t a n t  known as t h e  

c o e f f i c i e n t  of  i n t e r n a l  f r i c t i o n .  These two d i s t i n c t  

1 - I J  
l + I J  

t ypes  of c y c l e  r e p r e s e n t  d i f f e r e n t  compaction mechanisms. 

Where t h e  mater ia l  has  a c o n s t a n t  y i e l d  i n  stress, t h i s  

f r e q u e n t l y  r e p r e s e n t s  t h e  case of p l a s t i c  deformation.  

Where t h e  m a t e r i a l  behaves as a Mohr body, t h i s  

r e p r e s e n t s  compaction by b r i t t l e  f r a c t u r e .  

However, it must be remembered t h a t  t h e  above 

a p p l i e s  t o  a s o l i d  non-porous plug.  When an analogy i s  

made t o  porous t a b l e t  compacts t h e r e  s e e m s  t o  be 

s i g n i f i c a n t  confusion and d i f f i c u l t y  i n  i n t e r p r e t a t i o n  

of whether t h e  compound e x h i b i t s  c o n s t a n t  y i e l d  stress 

i n  s h e a r  o r  Mohr behaviour .  
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INTERPRETATION OF POWDER COMPACTION DATA 327 

For exa.mple, Leigh and co-workers 6 ,  f'ourid t h a t  

paracetamol , which caps a f t e r  compression, e x h i b i t s  

behaviour t h a t  resembles a Mohr body. However when 

granulated wi th  po lyv iny lpyr ro l idone ,  it. behaves l i k e  

a body with a c o n s t a n t  y i e l d  stress and e x h i b i t s  no 

capping. I t  should be noted t h a t  Leigh a.nd co-workers 

( 8 6 )  have r e l axed  t h e  requirement  of s l o p e  .AE3 = C D  = 1 

f o r  a c l a s s i f i c a t i o n  of c o n s t a n t  y i e l d  s t ress  i n  shea r  

type.  Theyonly r e q u i r e  s l o p e  AB t o  equa l  C D .  

Obiorah and Shot ton ( 4 5 )  found t h a t ,  i n  cointrast  

t o  Leigh and co-workers ( 8 5 )  , both paracetamol , which 

capped, and paracetamol mixed w i t h  g e l a t i n  hydroI.ysate 

o r  wa te r ,  which d i d  n o t  cap a f t e r  compression, texhibited 

p r e s s u r e  c y c l e  plots resembling a Mohr body. Obi.orah I 

i n  a l a t e r  p u b l i c a t i o n ,  concluded t h a t  paraceta.mo1 

behaved much l i k e  an e l a s t i c  body. 

( 8 7 )  

These i n c o n s i s t e n c i e s  have n o t  been i r e s  t r ictred 

s o l e l y  t o  pa.racetamoI. From r a d i a l  p r e s s u r e  cycl-es, 

Obiorah and Shotton ( 7  8 7 )  concluded t h a t  sodium 

c h l o r i d e  behaved l i k e  a Mohr body. However, e a r l i e r  

work by Leiclh and co-workers ( 8 6 )  concluded from 

s i m i l a r  p1ot:s t h a t  sodium c h l o r i d e ,  with an a x i a l  

loading of about 2 0 0 0  l b ,  behaves l i k e  a p e r f e c t  model 

of a body wi th  a c o n s t a n t  y i e l d  stress i n  s h e a r .  A t  

h igher  p r e s s u r e s ,  it more c l o s e l y  resembled a bqohr body. 

Recently,  Carstensen and Tour6 ( 

d a t a  of Leigh and co-workers ( 8 6 )  i n  terms of h y s t e r e s i s  

) re- ana 1. y s i ng t h e  
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328 KRYCER, POPE, AND HERSEY 

a r e a s ,  r a t h e r  t han  slope de te rmina t ions ,  concluded t h a t  

sodium c h l o r i d e  behaves l i k e  a Mohr body. This  r e s u l t  

does n o t  r e s o l v e  t h e  c o n f l i c t  as independent s t u d i e s  

us ing  microscopical  o b s e r v a t i o n s  (”) and Heckel p l o t s  

( 5 6 r  5 7 r  5 9 )  have demonstrated t h a t  sodium c h l o r i d e  

compacts by p l a s t i c  deformation r a t h e r  t han  by b r i t t l e  

f r a c t u r e .  A d d i t i o n a l l y ,  Huff ine and Bon i l l a  

found t h a t  t h e  s u r f a c e  a r e a  of sodium c h l o r i d e  compacts 

d e c r e a s e  on compression, i . e .  no maximum s u r f a c e  area,  

corresponding t o  b r i t t l e  f r a c t u r e  followed by f u s i o n ,  

was encountered.  

( 4 7 )  

I t  i s  appa ren t  from t h e  confusion t h a t  e x i s t s  i n  

t h e  l i t e r a t u r e  t h a t  t h e  above method of c l a s s i f y i n g  

c o n s t a n t  y i e l d  stress i n  s h e a r  o r  P40hr behaviour from 

r a d i a l  v e r s u s  a x i a l  p r e s s u r e  c y c l e s  i s  i l l - d e f i n e d .  

Other s t u d i e s  ( 5 0 r  8 9 r  ’O)  have made d e t a i l e d  

a n a l y s e s  of p r e s s u r e  c y c l e  p l o t s .  I n  t h e s e  p u b l i c a t i o n s  

t h e  s lopes  of between f i v e  and seven s t r a i g h t  l i n e s  w e r e  

used t o  d e s c r i b e  t h e s e  p l o t s :  each of which was g iven  

p h y s i c a l  s i g n i f i c a n c e .  The problem of f i t t i n q  s t r a i g h t  

l i n e s  t o  expe r imen ta l ly  de r ived  p r e s s u r e  c y c l e s  was 

r e c e n t l y  recognized by Carstensen and co-workers 

where t h e  accuracy and v a l i d i t y  of s l o p e  and i n t e r c e p t  

d e t e r m i n a t i o n s  w e r e  ques t ioned .  I t  was a l s o  po in ted  

o u t  ( 8 8 )  t h a t  t h e  c r i t e r i a  employed by v a r i o u s  workers 

f o r  t h e  de t e rmina t ion  of deformation behaviour d i f f e r e d .  

( 8 8 ,  9 1 )  
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INTERPRETATION OF POWDER COMPACTION DATA 329 

These c r i t i c i s m s  h e l p  t o  e x p l a i n  t h e  c o n f l i c t i n q  r e s u l t s  

r e p o r t e d  abclve. C a r s t e n s e n  and Tour6 

p r e s e n t  a method t o  d i s t i n g u i s h  between Yohr body and 

c o n s t a n t  y i e l d  i n  stress b e h a v i o u r .  BIJ  t r e a t i n g  t h e  

co'mpression of a powder i n  an  analogoi is  m a n n e r  t o  t h e  

compress ion  of a non-porous s o l i d ,  it was s,hown 

t h a t  p r e s s u r e  c y c l e  h y s t e r e s i s  a r e a  i s  l i i i c a r l y  

r e l a t e d  t o  maximally a p p l i e d  p r e s s u r e  i f  compression 

i s  by p l a s t i c  d e f o r m a t i o n .  However, i.f h r i t t l e  f r a c t u r e  

i s  t h e  p r i n c i p l e  mechanism of cornpressi:>n, t h e  h y s t e r e s i s  

a r e a  i s  q u a d r a t i c a l l y  r e l a t e d  t o  maximally app:tied 

p r e s s u r e .  As noted  above t h i s  tehcnirrue ( j i v e s  r e s u l t s  

t h a t  remain i n  c o n f l i c t  w i t h  mic roscop ic  o b s e r v a t i o n s ,  

Heckel p l o t  i n t e r p r e t a t i o n s  and s u r f a c e  a r e a  measurements .  

A d d i t i o n a l l y ,  i n  a l a t e r  p u b l i c a t i o n ,  C a r s t e n s e n  and 

co-workers ( 9 2 )  

expec ted  t o  compress  p r i m a r i l y  b e  p l a s t i c  f low, ,  

e x h i b i t e d  h 1 , s t e r e s i s  a r e a s  t h a t  were o u a d : r s t i c a l l y  

r e l a t e d  t o  maximally a p p l i e d  p r e s s u r e .  I t was concluded 

th . a t  due t o  t h e  changi.ncj p o r o s i t y  of t h e  compact d u r i n q  

compress ion ,  i t  was u n r e a l i s t i c  t o  d e r i v e  p r e s s u r e  c y c l e  

equat - ions  be,sed on a rion-porous compact .  

(R8 ' )T i . cn t  on t o  

( 8 8 )  

found t h a t  v a r i o u s  polymer f o r m u l a t i o n s ,  

Another  parameter  t h a t  c a n  be  derivetj. f rorn p r e s s u r e  

c y c l e  p l o t s  i s  t h e  Po i s son  r a t i o .  T h i s ,  a s  d e f i n e d  

p r e v i o u s l y ,  i s  a n  i n t r i n s i c  p r o p e r t y  of  t h e  m a t e r i a l .  

However i t  must be  no ted  t h a t  t h e  s l o p e  of OA ( F i q u r e  3 )  

i s  i n  f a c t  a s t ress  r a t i o  and w i l l  on1.y b e  numer i ca l ly  
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X X' 

Axia l  Pressure 

FIGURE 3 - 

T h e o r e t i c a l  r a d i a l  v e r s u s  a x i a l  p r e s s u r e  c y c l e s .  OABCD 
r e f e r s  to  a s o l i d  mater ia l  e x h i b i t i n g  behaviour  l i k e  a 
body w i t h  a c o n s t a n t  y i e l d  stress i n  s h e a r ,  w h i l e  
OA'B'C'D' r e f e r s  to  a compact e x h i b i t i n g  behaviour  a k i n  
to  a Mohr body. X I  X' are y i e l d  p r e s s u r e s ,  w h i l e  Y ,  Y' 
and D, D' are maximum and r e s i d u a l  d i e  w a l l  p r e s s u r e s  
r e s p e c t i v e l y .  

e q u a l  t o  P o i s s o n ' s  r a t i o  f o r  non-porous, i d e a l  

i s o t r o p i c  m a t e r i a l s  behaving p e r f e c t l y  e l a s t i c a l l y .  

Powdered m a t e r i a l s  are  n e i t h e r  non-porous, i s o t r o p i c  

nor  behave p e r f e c t l y  e l a s t i c a l l y .  
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(-7, 8 7 ,  9 0 )  have Long ( 8 5 )  and s e v e r a l  o t h e r  workers  

i n t e r p r e t e d  t h e  s l o p e  o f  OA (F' iqure 3 )  f o r  a powder 

compact t o  be  t h e  Po i s son  r a t i o  f o r  t h e  m a t e r i a l .  Leiqh 

and co-workers  ( 8 6 )  assumed a p r o p o r t i o n a l  i t y  between 

t h e  s l o p e  O,? and t h e  Po i s son  r a t i t o .  Summers and 

co--wo r k  er s ( 5 0 )  p r e s e n t e d  t h e  e q u a t i o n ,  

where nF is equa l  t o  t h e  r a t i o  oE r a d i a l l y  t r a n s m i t t e d  

t o  a x i a l l y  a p p l i e d  f o r c e  f o r  a compact a f t e i -  y i e l d .  

C a r s t e n s e n  and Tour6 ( 8 8 )  s t a t e  c h a t  t h e  s l o p e  of  OA 

a d h e r e s  t o  t h e  r e l a t i o n s h i p ,  

where F and P a r e  t h e  a x i a l l y  and r a d i a l l y  t r a n s m i t t e d  

p r e s s u r e s  r e s p e c t i v e l y .  

Q u a l i t a t i v e  and q u a n t i t a t i v e  i n t e r p i - e t a t i  ons of t h e  

s l o p e  of OA and i t s  r e l a t i o n s h i p  t o  t h e  compacti.on 

p r o p e r t i e s  of powdered materials h a s  a l s o  been  a t t empted  

by a number of worke r s .  A s  e a r l y  as 1955,  NePs:,n 

employed p e r c e n t a g e  t r a n s m i t t a n c e  of punch p r e s s u r e  t o  t h e  

d i e  w a l l  i n  t h e  e v a l u a t i o n  of d i e  w a l l  l u h r i c a n t s .  

Windheuser and co-workers ('') found t h a t  t h e  i n i t a l  s l o p e  

cou ld  a l s o  be  r e l a t e d  t o  c r y s t a l  h a r d n e s s .  T h i s  was 

f u r t h e r  deLreloped by Ridgway and co-workcr s 

showed t h a t  t h e  t r a n s m i t t a n c e  r a t i o  ( r a t i o  of r a d i a l  

p r e s s u r e  at. t h e  d i e  w a l l  t o  a x i a l  p r e s s u r e  a p p l i e d  by t h e  

punch) was i n v e r s e l y  p r o p o r t i o n a l  t o  t h e  Vicker  s h a r d n e s s  

( 0 3 )  

. They ( '3 5 D
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332 KRYCER, POPE, AND HERSEY 

va lue  of  t h e  mater ia l  being compressed. However, none of 

t h e s e  e a r l y  workers admit ted t h e  e x i s t e n c e  of p o i n t  A 

(F igu re  31, t h e  y i e l d  p o i n t .  I n  a l l  t h r e e  s t u d i e s ,  

p r e s s u r e  c y c l e  d a t a  was f i t t e d  t o  e i t h e r  smooth cu rves  

or single s t r a i g h t  l i n e s .  Other i n t e r p r e t a t i o n s  are 

t h a t  t h e  slope of  OA ( c a l l e d  t h e  stress r a t i o  by 

C a r l e s s  and Leigh ( 3 6 ) )  w a s  i n v e r s e l y  r e l a t e d  t o  t h e  

y i e l d  p r e s s u r e  ( v a l u e  X i n  F igu re  3)  

m a t e r i a l s  t h a t  compressed w e l l  had higher  i n i t i a l  s l o p e s  

than  poorly compressible  mater ia ls  

( 3 6 ) ,  and t h a t  

( 8 7 )  

Two o t h e r  d e r i v a b l e  parameters  t h a t  have been 

e x t e n s i v e l y  employed are maximum and r e s i d u a l  d i e  wall 

p r e s s u r e s  

r e s p e c t i v e l y  i n  F igu re  3 .  These two v a r i a b l e s  have been 

( 4 5 1  50, 8 7 f  8 9 r 9 0 ,  9 6 ,  9 7 ) ,  points y and I? 

r e l a t e d  to  t h e  deg ree  of  p l a s t i c  deformation underqoze 

d u r i n g  compaction. Because compacts e x h i b i t  r a d i a l  

stress r e l a x a t i o n  ( 7 9 r  "1 a f t e r  release of a x i a l  

p r e s s u r e ,  r e s i d u a l  d i e  w a l l  p r e s s u r e s  should s t r i c t l y  

be quoted as e i t h e r  maximum o r  e q u i l i b r i u m  r e s i d u a l  d i e  

w a l l  p r e s s u r e s ,  a s  t h e  case may be.  

I n  g e n e r a l ,  r e s i d u a l  d i e  w a l l  p r e s s u r e  

f adeoua te ly  d e f i n e d )  is probably t h e  m o s t  

u s e f u l  parameter as i t  relates  d i r e c t l y  t o  t h e  

i r r e v e r s i b l e  deformation undergone du r ing  compaction. 

LOW va lues  f o r  r e s i d u a l  d i e  w a l l  p r e s s u r e  and Poisson 

r a t i o  would i n d i c a t e  t h e  compact had recovered a x i a l l y  
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and c o n t r a c t e d  r a d i a l l y .  T h i s  would induce  c o n s i d e r a b l e  

s t r a i n  w i t h i n .  t h e  compact ,  because  d u r i n g  t he  r ecove ry  

p r o c e s s  t h e  t a b l e t  would b e  s u h j c c t e d  to a r e s i d u a l  

p r e s s u r e  a c t i n g  from t h e  d i e  w a l l  and t r i c t i o n  

r e s t r i c t e d  p e r i p h e r a l  movement. Under t h e s e  c o n d i t i o n s ,  

s e p a r a t i o n  o r  capp ing  c a n  o c c u r  a long  the stres!; l o c i  

( 8 7 ) .  

f r a c t u r e  p r o p e n s i t y  d i s c u s s e d  p r e v i o u s l y .  

Th i s  i s  i n t i m a t e l y  re la tes3  t o  t h e  k ~ r i t t l e  

Assuming t h e n  t h a t  t h e  t a b l e t  i.n t h e  d i e  h a s  o n l y  

a n e g l i g i b l e  r e s i d u a l  e l a s t i c  e n e r g y ,  then  a useful 

t echn ique  f o r  q u a n t i f y i n g  t h e  e x t e n t  O F  p l a s t i c  f low 

d u r i n g  a cclmpaction c y c l e  would be a plo-t  of maximum 

( o r  e q u i l i b r i u m )  r e s i d u a l  d i e  w a l l  p r e s s u r e  v o r s u s  

a p p l i e d  p r e s s u r e .  I n  t h i s  i n s t a n c e ,  app:Lied p r e s s u r e  

i s  more u s e f u l  t h a n  work of compact ion ,  as i t  r e l a t e s  

d i r e c t l y  tc ,  t h e  r a d i a l  a x i a l  p r e s s u r e  c y c l e  from which 

r e s i d u a l  d i e  w a l l  p r e s s u r e  i s  c a l c u l a t e d .  Maximum d i e  

wa l l  p r e s s u r e s  a r e  n o t  g e n e r a l l y  used as  t h e s e  c o u l d  

c o n t a i n  a h i g h  e l a s t i c  compound t h a t  doe;s n c t  r e l a t e  

t o  t.he e x t e n t  of p l a s t i c  f l o w  undernone ;by t h e  compact .  

C ONCLUS I O N  

A numher o f  t h e  most  common methods employed i n  t h e  

e v a l u a t i o n  of powder compact ion d a t a  ha-7e been r ev iewed .  

I t  h a s  been shown t h a t  i ndependen t  s t u d i e s  on t h e  same 

m a t e r i a l s  have y i e l d e d  c o n f l i c t i n g  r e s u l t s .  Plaiiy 
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TABLE 1 

Recommendation of t h e  most s u i t a b l e  t echn iques  f o r  t h e  
q u a n t i t a t i o n  of  powder compaction p r o p e r t i e s  (see t e x t  
f o r  e x p l a n a t i o n  of  symbols) .  

Compaction P rope r ty  Methods f o r  Q u a n t i t a t i o n  
t o  be i n v e s t i g a t e d  ( I n  o r d e r  of p re fe rence )  

Q u a l i t a t i v e  d e s c r i p t i o n  of Type of Heckel p l o t  
c o n s o l i d a t i o n  mechanism ( A ,  B o r  "C" )  

U t i l i z a t i o n  of t h e  energy 1) T a b l e t  Work of F a i l u r e ,  
of compaction Wf (Eq 3 )  v s .  Lower 

Punch Work, LPWl (Eq 6 )  

ox (Eq 2 )  vs.  LPWl 

3)  Crushing Force v s .  Mean 
Applied P r e s s u r e ,  Pm 
(Eq 1) 

2 )  T a b l e t  T e n s i l e  S t r e n g t h ,  

A b i l i t y  of mater ia l  t o  1) In AF vs. t (Eq 1 2 )  
deform p l a s t i c a l l y  Measure t h e  v i s c o e l a s t i c  

s l o p e ,  k 

2)  In (1/1 - D) vs. P 
( E a  10) 
Employ zero-pressure 
d e n s i t y  measurements, 
c a l c u l a t e  t h e  y i e l d  
p r e s s u r e ,  Py 

E x t e n t  of p l a s t i c  flow Maximum r e s i d u a l  d i e  w a l l  
d u r i n g  compaction p r e s s u r e  vs .  Applied 

p r e s s u r e ,  Pa 

A b i l i t y  of m a t e r i a l  
t o  deform e l a s t i c a l l y  

Lower Punch Work on 
Re-compression, LPW2 ( E q  7 )  
vs, Applied P r e s s u r e  on 
re-compression) 

E x t e n t  of e l a s t i c  
de formation d u r i n g  
compac t i o  n 

Percentage E l a s  t i c  Recovery 
v s .  LPWl 
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INTERPRETATION OF POWDER COMPACTION DATA 335 

f o r r , u l a e  h a v e  a l so  b e e n  u t i l i z e d  w i t h o u t  s u b s t a n t i a t i o n  

of t h e i r  v a l i d i t y  or  a p p l i c a b i l i t y .  

I n  summary, T a b l e  1 p r e s e n t s  p o s s i b l e  a l t e r n a t i v e  

methods  of e v a l u a t i n g  c o m p a c t i o n  p r o p e r t i e s ,  wi th t h e i r  

o r d e r  of p r e f e r e n c e .  T h e s e  s u g q e s t i o n s  a re  t e n t a l t i v e  

and  it is  hoped t h a t  f u t u r e  r e s e a r c h  w i l l  v e r i f y  t h e i r  

v a l i d i t y  and j u s t i f y  t h e  i n c l u s i o n  of a n y  technicrues  

o m i t t e d .  
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